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Letters
On the paradox of TiCl4 reducing power: pinacol coupling and
two-carbon homologation of carbonyl compounds
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Abstract—TiCl4/DIPEA/CH2Cl2 reducing system promotes pinacol coupling and/or reduction to alcohol of aromatic aldehydes and
carbonyl compounds activated towards reduction by an electron withdrawing group. In addition, bis homologation of these sub-
strates is observed. An inner-sphere electron transfer from TiCl4 to DIPEA accounts for the products distribution.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1.
Over the past two decades, TiCl4, in conjunction with
diisopropylethylamine (DIPEA) as a base and CH2Cl2
as a solvent, has been widely used as the system of
choice for promoting aldol-type addition reactions.1

Pioneering studies by Evans,1a–c later confirmed by
Tanabe,2 firmly established that �TiCl4 complexation of
the enolizable substrate must precede the introduction
of base, because the reaction of uncomplexed TiCl4 with
DIPEA leads to irreversible complexation and, as con-
sequence, no enolization�.1a Since then, the order of
reagent addition has always been strictly followed in
promoting aldol-type addition reactions.

In this communication, we report that TiCl4/DIPEA
complexation is not irreversible but it is the driving force
that promotes an inner-sphere electron transfer from
TiCl4 to DIPEA when a non-co-ordinating solvent, such
as CH2Cl2, is used.3 In fact, treatment of TiCl4 with
DIPEA (from 0.5 to 3.0 equiv) in CH2Cl2, at 0 �C under
N2, resulted in an instantaneous formation of the
characteristic blue-violet color of TiCl3. Actually, it is
surprising that no one realized it before,4 notwith-
standing the numerous studies1 conducted with TiCl4/
DIPEA/CH2Cl2 system.

The sequence depicted in Scheme 1 (R¼ i-Pr) is pro-
posed to account for this novel and unexpected redox
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reaction. TiCl4 is a mild oxidizing agent (E0 ¼ 0:10V),
but following the activation of the precursor complex A,
metal to ligand electron transfer (MLET) occurs to
produce Ti(III) and aminium radical B.

The acidity of the protons in a to an aminium radical is
greatly enhanced relative to the corresponding neutral
amine and the second step can be viewed as a deproto-
nation of B. The neutral radical C is a good reducing
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agent and reacts with a second equivalent of Ti(IV) to
provide D. Iminium salts, as D, are relatively stable only
in strong acidic media thus, under our reaction condi-
tions, the equilibria involved should be by far shifted in
favour of enamine F.5

Both Ti(III) and F (or D) react further with 4-Br-benz-
aldehyde 1a added in one portion, after 10min, to the
blue-violet TiCl3 solution. The Ti(III)-carbonyl oxygen
co-ordination activates 1a towards reductive dimeriza-
tion and dimer 2a is formed.
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The Ti(IV)-carbonyl oxygen co-ordination favors the
aldol condensation of 1a with the weak nucleophilic
enamine F and, upon metal-assisted dehydration, imin-
ium salt 3 is obtained.6 Basic hydrolysis of 3 furnishes
trans-4-Br-cinnamaldehyde 4a and diisopropylamine
(Eqs. 2 and 3).
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Table 1. Reduction and two-carbon homologation of 4-Br-benzal-

dehyde 1a under different experimental conditions7

+ +

2a 5a 4a

1a ArC

OH

H

)
2 ArCH2OH ArC

H

CCHO

H

Entry

(method)

1a:TiCl4:

DIPEA

(equiv ratio)

Yields (%)a

2ab 5ab 4ac

1 (I) 1:1:1 54d –– 30

2 (I) 1:1:2 49d 21 30

3 (I) 1:1:3 37e 27 36

4 (II) 1:1:1 –– 43 30

5 (II) 1:1:2 –– 60 40

6 (II) 1:1:3 –– 64 36

7 (II) 1:0.5:2 –– 33 35

8 (III) 1:1:2 14f 51 35

aYields (%) are based on the starting 1a; the difference to 100% is

unreacted 1a; mass balance is always P95%.
b Products distribution and dl/meso ratio were determined by 1H NMR

analysis of the crude reaction extracted with AcOEt6 and added with

an internal standard.7
c Isolated yields (1H NMR purity P95%).
d dl/meso ratio, 74:26.
e dl/meso ratio, 77:23.
f dl/meso ratio, >99:<1.
Thus, the net result of this unexpected process is pinacol
coupling and two-carbon homologation of the starting
aldehyde (Table 1, entry 1).7

Formation of 4a can be viewed as a �direct aldol reac-
tion� of an aromatic aldehyde with acetaldehyde, a
transformation that cannot be easily achieved since,
under basic catalysis, acetaldol is formed instead.

Concerning the pinacol coupling, TiCl4/DIPEA/CH2Cl2
reducing system behaves as the TiCl3/CH2Cl2 solution,

8

which stereo-couples aromatic aldehydes8 but not aro-
matic ketones.9 In fact, acetophenone, under the con-
ditions of entry 2, afforded only 10% of dimers,
notwithstanding the evident formation of the charac-
teristic blue-violet TiCl3 color. Self-aldol condensation
of acetophenone occurred instead and 1,3-diphenyl-2-
buten-1-one (58% yield E/Z, 96:4) and 1,3-diphenyl-3-
hydroxy-butan-1-one (24%) are obtained. However, this
result substantiates that enolization does occur even if
the enolizable substrate is added last to the TiCl4/
DIPEA in CH2Cl2 solution.

4-Br-benzaldehyde, selected as a model substrate, was
then investigated under different experimental condi-
tions, by changing either the TiCl4/DIPEA molar ratio
or the order of reagents mixing.

As it can be seen from the data of Table 1, the yields of
4a did not substantially change (30–40%) under all the
conditions tested, whereas the distribution of the
reduction products (dimer 2a and/or 4-Br-benzyl alcohol
5a) strongly depends on both the ratio and order of
reagent addition.

Further investigation is necessary to carefully explore
the observed reactivity, which may be tentatively
ascribed to different types of complexation between
titanium ions [Ti(III) or Ti(IV)] and the reactive inter-
mediates involved in the redox pathways.

From our previous studies, we established10 that an
aqueous acidic TiCl3 solution easily reduces carbonyl
compounds activated towards reduction by an electron
withdrawing group, so we applied this novel TiCl4/
DIPEA/CH2Cl2 reducing system to both PhCOCOOMe
1b and PhCOCOPh 1c. The results obtained, under the
conditions of entry 2, are given in Eqs. 4 and 5 (yields
based on the starting 1b–c).
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Since this novel reduction system seems to have general
applicability, its extension is under investigation to both
other amines and other substrates. It remains to be seen
whether this attractive approach is to be successful in
enantioselective and/or catalytic pinacol coupling.
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